If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2=7k+1=0
We move all terms to the left:
3k^2-(7k+1)=0
We get rid of parentheses
3k^2-7k-1=0
a = 3; b = -7; c = -1;
Δ = b2-4ac
Δ = -72-4·3·(-1)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{61}}{2*3}=\frac{7-\sqrt{61}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{61}}{2*3}=\frac{7+\sqrt{61}}{6} $
| 18x+6/12-6x=3/2 | | 1.2=m2.5m= | | 15+3.00x=34.60 | | 3z-3=4z+11 | | 9+2x-4(x-2)^(1/3)=0 | | 7(y+3)=9y+5 | | 2x(5+7)6=5x/78 | | 8y+16=7y+10 | | 8y+16=7y=10 | | 3x^2+12x-53=10 | | 10b—7b=-27 | | -4=-1–3(2p+3) | | (5,2);m=3 | | 4x-1÷2=x=7 | | M^2-13m=0 | | 4(2x-3=36 | | 3x+4=4-6x=+3 | | 4p-7=2p+10 | | 4^2x-7=64 | | 40x-11x=801+40 | | 5(y+6)=3y+32 | | 80x-16x^2=} | | 14=10+r/2 | | 38x-10x=780+4 | | 80x-16x^2=19 | | 2(x-15)=39 | | 5r-5=30 | | 8(6.857142857+-1.142857143y)+7y=73 | | 2+4x-21=0 | | 5t-5÷-10=70 | | 5(y+6=3y+32 | | 8x+19=3x-8 |